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Abstract

The performance of Reynolds stress transport (RST) models in non-equilibrium ¯ows is limited by the lack of information about

two dynamically important e�ects: the role of energy-containing turbulence structure (dimensionality) and the breaking of re¯ec-

tional symmetry due to strong mean or frame rotation. Both e�ects are fundamentally non-local in nature and this explains why it

has been di�cult to include them in one-point closures like RST models. Information about the energy-containing structure is

necessary if turbulence models are to re¯ect di�erences in dynamic behavior associated with structures of di�erent dimensionality

(nearly isotropic turbulence vs turbulence with strongly organized two-dimensional structures). Information about the breaking of

re¯ectional symmetry is important whenever mean rotation is dynamically important (¯ow through axisymmetric di�user or nozzle

with swirl, ¯ow through turbomachinery, etc.). Here we present a new one-point model that incorporates the needed structure

information, and show a selection of results for homogeneous and inhomogeneous ¯ows. Ó 2000 Begell House Inc. Published by

Elsevier Science Inc. All rights reserved.

1. Introduction

Reynolds-averaged turbulence models are the primary tools
for the engineering analysis of complex turbulent ¯ows, but
their performance in ¯ows that must be computed in order to
advance technology is at best inconsistent. Dynamically im-
portant features of the turbulence structure are inherently non-
local in nature, and thus di�cult to emulate in one-point
closures, yet they cannot be completely ignored in models that
are designed for use in complex ¯ows. This lack of crucial
information is now recognized as one of the primary challenges
facing one-point turbulence modeling.

Consider for example the case of Reynolds stress transport
(RST) models, where the Reynolds stresses Rij are used for
closing the unknown terms in their own transport equations.
Rij carries information about the componentality of the tur-
bulence (the relative strengths of di�erent velocity compo-
nents), but not about its dimensionality (the relative uniformity
of the structure in di�erent directions). Thus RST models
cannot possibly satisfy conditions associated with the dimen-
sionality of the turbulence, or re¯ect di�erences in dynamic
behavior associated with structures of di�erent dimensionality
(nearly isotropic turbulence vs turbulence with strongly orga-
nized two-dimensional structures). Similarly, well-known lim-
itations of RST models in predicting ¯ows with strong rotation
can be, at least partly, traced back to the lack of dimensio-
nality and other information.

In the issues outlined above, and discussed in more detail in
Reynolds and Kassinos (1995) and Kassinos et al. (1999), let

us, introduce a set of one-point turbulence structure tensors
that contain key information missing from standard one-point
closures. Here, we outline the construction of a one-point
model based on the transport of one of these tensors, and show
a selection of results for homogeneous and inhomogeneous
¯ows.

2. De®nitions

We introduce the turbulent stream function W0i, de®ned by

u0i � �itzW
0
z;t; W0i;i � 0; W0i;nn � ÿx0i; �1�

where u0i and x0i are the ¯uctuating velocity and vorticity
components. The Reynolds stress tensor is given by

Rij � u0iu
0
j � �ipq�jtsW

0
q;pW

0
s;t; �2a�

and the associated non-dimensional and anisotropy tensors are

rij � Rij=q2; ~rij � rij ÿ 1

3
dij: �2b�

Here q2 � 2k � Rii. Using isotropic tensor identities (Mahoney,
1985), we can write (2a) as

Rij �W0k;iW
0
k;j|����{z����}

Dij

�W0i;kW
0
j;k|����{z����}

Fij

ÿ W0i;kW
0
k;j �W0j;kW

0
k;i

� �
|�����������������{z�����������������}

Cij�Cji

� dijq2: �3�

The constitutive equation (3) shows that one-point correla-
tions of stream-function gradients, like the Reynolds stresses,
are dominated by the energy-containing scales. These corre-
lations contain independent information that is important for
the proper characterization of non-equilibrium turbulence. For
example, the Dij tensor reveals the level of two-dimensionality
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(2D) of the turbulence, and Fij describes the large-scale struc-
ture of the vorticity ®eld (Reynolds and Kassinos, 1995).

In homogeneous turbulence, the new structure tensors are
most conveniently de®ned in terms of their associated spectra.
It is useful to recall that in this case, discrete Fourier expan-
sions can be used to represent individual realizations in a box
of length L. Then the discrete cospectrum of two ®elds f and g
is given by

~Xij�k� � �L=2p�3f̂i�k�ĝ�j �k�;
where the bar represents an ensemble average over the box.
The cospectrum of two ®elds Xij�k� is the limit of the discrete
cospectrum ~Xij as L!1. Here we use

Xij�k� � f̂i�k�ĝ�j �k�
as a shorthand notation, but the exact de®nition should be
kept in mind.

For homogeneous turbulence Cij � Cji � 0, and the re-
maining tensors in (3) have equivalent representations in terms
of the velocity spectrum tensor Eij�k� � ûiû�j and the vorticity
spectrum tensor Wij�k� � x̂ix̂�j . These are given below.

Structure dimensionality tensor:

Dij �
Z

kikj

k2
Enn�k�d3k;

dij � Dij=q2; ~dij � dij ÿ 1

3
dij: �4�

Structure circulicity tensor:

Fij �
Z

Fij�k�d3k;

fij � Fij=q2; ~fij � fij ÿ 1

3
dij: �5�

Here Fij�k� is the circulicity spectrum tensor, which is related
to the vorticity spectrum tensor Wij�k� � x̂ix̂�j through the
relation

Fij�k� � Wij�k�
k2

:

We de®ne the third-rank tensor

Qijk � ÿu0jW
0
i;k ; qijk � Qijk=q2; �6�

where we have used q2 � 2k � Rii for the normalization. For
homogeneous turbulence, Qijk is

Qijk � �ipqMjqpk ; �7�
where

Mijpq �
Z

kpkq

k2
Eij�k�d3k: �8�

The de®nition of the third-rank fully symmetric stropholysis
tensor is given by

Q�ijk �
1

6
�Qijk � Qjki � Qkij � Qikj � Qjik � Qkji�: �9�

For homogeneous turbulence, Qijk and Q�ijk are bi-trace free

Qiik � Qiki � Qkii � 0; Q�iik � 0: �10�
A decomposition based on group theory shows that Qijk and
Q�ijk (here we use q�ijk � Q�ijk=q2) are related to each other and to
lower-rank tensors,

Qijk � q2 1

6
�ijk

�
� 1

3
��ikmrmj � �jimdmk � �kjmfmi� � q�ijk

�
; �11�

and

rij � �impqmjp; dij � �impqpmj; fij � �impqjpm: �12�

3. Model formulation for homogeneous turbulence

The one-point structure-based model carries the transport
equation for Q and a model transport equation for the dissi-
pation rate e. The formulation of the model is based on sim-
pli®ed non-local theory making use of structure modeling
ideas. In Section 3.1, we outline this non-local theory and in
Section 3.2, we show how it leads to the one-point model.

3.1. IPRM formulation

Kassinos and Reynolds (1994, 1996) formulated a simpli-
®ed non-local theory particle representation model (PRM) for
the rapid distortion theory (RDT) of homogeneous turbulence.
The original idea was to represent the turbulence by an en-
semble of ®ctitious particles. A number of key properties and
their evolution equations are assigned to each particle. En-
semble averaging produces a representation of the one-point
statistics of the turbulent ®eld, which is exact for the case of
RDT of homogeneous turbulence. In essence, this approach
represents the simplest theory beyond one-point methods that
provides closure for the RDT equations without modeling.

The interacting particle representation model (IPRM) is an
extension of the PRM formulation that includes the e�ects of
non-linear eddy±eddy interactions, important when the mean
deformations are slow. Unlike standard models, which use
return-to-isotropy terms, the IPRM incorporates non-linear
e�ects through the use of e�ective gradients. The e�ective
gradients idea postulates that the background non-linear ed-
dy±eddy interactions provide a gradient acting on each particle
in addition to the actual mean velocity gradient. An advantage
of this formulation is the preservation of the RDT structure of
the governing equations even for slow deformations of ho-
mogeneous turbulence. A detailed account of these ideas is
given in Kassinos and Reynolds (1996, 1997) and will not be
repeated here. To a large extent, the one-point Q-model is
based on the IPRM formulation.

Each of the hypothetical particles in the IPRM is assigned a
set of properties:
· V velocity vector,
· W vorticity vector,
· S stream-function vector,
· N gradient vector,
· P pressure.
The stream-function, velocity, and gradient vectors of each
particle form an orthogonal triad, i.e.,

vi � �irzsznr; vivj � sisj � ninj � dij; �13�
where

ni � Ni=N ; vi � Vi=V ; si � Si=S �14�
are unit vectors.

In the IPRM, we follow the evolution of ``clusters'' of
particles, each cluster representing a collection of particles
having the same unit gradient vector ni. Averaging over the
particles of a given cluster produces conditional moments.
Averaging the conditional statistics over all clusters produces
the one-point statistics for the turbulent ®eld. For homoge-
neous turbulence it is computationally e�cient to track clus-
ters rather than individual particles (Kassinos and Reynolds,
1996).
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The governing equations for the conditional (cluster aver-
aged) IPRM formulation are (see Kassinos and Reynolds,
1996)

_ni � ÿGn
kink � Gn

krnknrni; �15�

_Rjnij � ÿGv
ikRjnkj ÿ Gv

jkRjnki � �Gn
km � Gv

km��Rjnimnknj � Rjnjmnkni�
ÿ �2C1Rjnij ÿ C2

2Rjnkk�dij ÿ ninj��: �16�
Here ni�t� is the unit gradient vector and Rjnij is the conditional
Reynolds stress tensor corresponding to a cluster of particles
with a common ni�t�. The e�ective gradients are

Gn
ij � Gij � CnGe

ij; Gv
ij � Gij � CvGe

ij; �17�
where Gij is the mean velocity gradient and

Ge
ij �

1

s�
rikdkj:

The constants Cv and Cn are taken to be Cn � 2:2 Cv � 2:2.
The di�erent values for these two constants account for the
di�erent rates of return to isotropy of Dij and Rij.

The IPRM time scale s� is chosen so as to produce the
proper dissipation rate for the turbulent kinetic energy. The
rate of dissipation produced by the IPRM equation (16) is

ePRM � q2 Cv

s�
rikdkmrmi: �18�

We choose the time scale s� so that ePRM � e, where e is the
dissipation rate obtained from a model dissipation transport
equation. This requires

s� � sCvrikdkmrmi; �19�
where s is the turbulent time scale, which for homogeneous
turbulence (at high Reynolds numbers) is simply q2=e. Thus to
complete the IPRM, we use the standard model equation for
the dissipation rate e with a modi®cation to account for the
suppression of e due to mean rotation,

_e � ÿC0

1

s
ÿ CsSpqRpq

1

s
ÿ CX

������������������
XnXmdnm

p
e: �20�

Here Xi is the mean vorticity vector, and the constants are

C0 � 11

3
; Cs � 3:0 and CX � 0:01: �21�

The last term in (16) accounts for rotational randomization
due to eddy±eddy interactions. We require that the rotational
randomization model leaves the conditional energy unmodi-
®ed. This requires that C1 � C2

2 , and hence using dimensional
considerations we take

C1 � C2
2 � 8:5X�fpqnpnq; �22�

where X� � �����������
X�kX

�
k

p
and X�i � �ipqGe

qp.

3.2. The stropholysis equation

We consider general deformations of homogeneous turbu-
lence. The most convenient method for deriving the Q equa-
tion is to use the conditional (cluster averaged) IPRM
formulation to obtain the evolution equation for M [see (8)],
and then contract the M equation with the alternating tensor
�ijk according to (7) in order to extract the Q equation. The
PRM representation for Q and M is

Qijk � ÿhV 2vjsinki; Mijpq � hV 2vivjnpnqi; �23�
where si � �ikzVknz=V is the unit stream function vector (see
Kassinos and Reynolds, 1997). Hence using (15) and (16) and
the de®nitions (7) and (23), one obtains

dQijk

dt
� ÿGv

jmQimk ÿ Gn
mkQijm ÿ Gv

sm�itsMjmtk ÿ Gn
mt�itsMjsmk

� �Gn
wq � Gv

wq�Qiqwjk � 2Gn
qrQijkqr

ÿ 8:5X�frs�Qijkrs � Qjikrs�: �24�
Using the PRM representation, Qijkqr � hV 2vjsinknqnri:

3.3. Closure of the stropholysis equation

Closure of (24) requires a model for the tensor Qijkpq in
terms of Qijk. Once such a model has been speci®ed, it e�ec-
tively provides a model for Mijpq in terms of Qijk since Mijpq can
be obtained from Qijkpq by a contraction with �ijk . For small
anisotropies, one can write an exact representation of Qijkpq in
terms of Qijk that is linear in Qijk . Other tensors, like Rij, Dij

and Fij, can be expressed in terms of Qijk [see (12)] and need not
be included explicitly in the model. De®nitions (contractions
and continuity) determine all the coe�cients in the linear
model. Thus the linear model contains no adjustable param-
eters.

In the presence of mean rotation, rotational randomization
is an important dynamical e�ect that must be accounted for in
the model. Rotational randomization, a strictly non-local ef-
fect that is lost in the averaging procedure generating the one-
point statistics, is caused by the di�erential action of mean
rotation on particle velocity vectors (Fourier modes) according
to the alignment of the corresponding gradient (wavenumber)
vectors with the axis of mean rotation. The main impact of
Fourier randomization on one-point statistics is the damping
of rotation-induced adjustments; here this e�ect is added ex-
plicitly through the simple model,

DQijk

Dt
� � � � ÿ c1�Qijk ÿ Qrf

ijk� ÿ c2�ijm�Rmk ÿ Dmk�
ÿ c3�ikm�Fmj ÿ Dmj�: �25�

The ®rst term accounts for the rotational randomization e�ects
in rotation dominated ¯ows, while the remaining two terms
account for the modi®cation of these e�ects due to the com-
bined action of mean strain and rotation. Qrf is the limiting
state of Q under rapid rotation. Here c1, c2 and c3 are scalar
functions of the invariants of the mean strain and rotation and
are determined from simple test cases. A detailed discussion of
these models will appear separately.

The new one-point model produces excellent results for
general irrotational deformations of homogeneous turbulence.
A particularly interesting example is shown in Fig. 1, where we
consider the case of irrotational axisymmetric expansion (ax-
isymmetric impingement). The mean velocity gradient tensor
in this case is

Sij � S
ÿ1 0 0

0 1
2

0
0 0 1

2

0@ 1A �26�

and the total strain

C � exp

Z t

0

jSjt0 dt0
� �

�27�

is used as the horizontal axis in Fig. 1. As was discussed in
Kassinos and Reynolds (1996, 1997), the axisymmetric
expansion ¯ow exhibits a paradoxical behavior, where a slower
mean deformation rate produces a stress anisotropy that ex-
ceeds the one produced under RDT for the same total mean
strain. This e�ect is triggered by the di�erent rates of return to
isotropy in the ~r and ~d equations, but it is dynamically con-
trolled by the rapid terms. The net e�ect is a growth of ~r at the
expense of ~d, which is strongly suppressed. The one-point
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model (see Fig. 1) is able to capture these e�ects well and also
predicts the correct decay rates for the normalized turbulent
kinetic energy k=k0 and dissipation rate e=e0. The predictions of
the one-point Q-model are comparable to those of the IPRM.

In Fig. 2, we consider deformation by plane strain

Sij � S
0 0 0
0 ÿ1 0
0 0 �1

0@ 1A: �28�

As shown in Fig. 2 (corresponding to Sq2
0=e0 � 1:0) the per-

formance of the one-point model is similar to that of the
IPRM and its predictions compare favorably with the DNS
results by Lee and Reynolds (1985). The details in the evolu-
tion histories of ~rij; ~dij and ~fij are captured well and the correct
rates are predicted for the decay of the (normalized) turbulent
kinetic energy k=k0 and dissipation rate e=e0.

The predictions of the one-point Q-model for the case of
homogeneous shear (where the mean gradient is G12 � C) are
shown in Fig. 3. Comparison is made to the DNS results by
Rogers and Moin (1987). Note that the model produces sat-
isfactory predictions for the components of rij � Rij=q2; dij �
Dij=q2, and fij � Fij=q2. A fully developed state was reached in
the simulations for Ct P 10, and in this range both the Q-
model and the IPRM predict the correct level for the dimen-
sionless ratio of production over dissipation, P=e. Here we
de®ne P � ÿSijRij.

A challenge for one-point models is found in the elliptic
streamlines ¯ow (see Fig. 4),

Gij �
0 0 ÿcÿ e
0 0 0

cÿ e 0 0

0@ 1A; 0 <j e j<j c j; �29�

where the e�ects of mean rotation and plane strain are com-
bined so as to emulate conditions encountered in turboma-
chinery. (Note that the case e � 0 corresponds to pure rotation

while the case j e j � j c j corresponds to homogeneous shear.)
Direct numerical simulations (Blaisdell and Shari�, 1996) show
exponential growth of the turbulent kinetic energy in elliptic
streamline ¯ows, the analysis of which shows they are

Fig. 2. Comparison of the one-point Q-model predictions (dashed

lines) with the IPRM results (solid lines) and the 1985 DNS by Lee

and Reynolds (symbols) for the plane strain case PXA (Sq2
0=e0 � 1:0).

(a)±(c) Evolution of the Reynolds stress, dimensionality, and circulicity

anisotropies; 11 component (d), 22 component (j), 33 component

(m). (d) Evolution of the normalized turbulent kinetic energy (d) and

dissipation rate �.�.

Fig. 3. Comparison of Q-model predictions (lines) and the 1987 DNS

by Rogers and Moin (symbols). (a)±(c) Evolution of the Reynolds

stress, dimensionality, and circulicity components in homogeneous

shear with Cq2
0=e0 � 4:72: 11 component (±±±±±±; s); 22 component

(ÿ ÿ ÿ ÿ; r); 33 component (± � ±; �); 12 component (ÿÿÿÿ; r).

(d) Evolution of production over dissipation rate (P=e): model

(ÿ ÿ ÿ ÿ); IPRM (±±±±±±); DNS (j).

Fig. 1. Comparison of the one-point Q-model predictions (dashed

lines) with IPRM results (solid lines) and the 1985 DNS by Lee and

Reynolds (symbols) for the axisymmetric expansion case EXO

(Sq2
0=e0 � 0:82). (a)±(c) Evolution of the Reynolds stress, dimensio-

nality, and circulicity anisotropies; 11 component (d), 22 and 33

components �.�. (d) Evolution of the normalized turbulent kinetic

energy (d) and dissipation rate �.�.
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associated with resonant instabilities in narrow wavenumber
bands in wavenumber space. Standard RST models errone-
ously predict decay of the turbulence. As shown in Fig. 4, the
one-point Q-model is able to capture the main features of the
oscillations observed in the components of the Reynolds stress
anisotropy ~rij. Furthermore, the model is able to capture an
exponential growth of the turbulent kinetic energy. Note,
however, that the initial growth rate predicted by both the
non-local IPRM and the Q-model falls short of the rate pre-
dicted by the DNS. At longer times, the growth rates predicted
by both models compare more favorably to those observed in
the DNS.

A particularly interesting test case is that of homogeneous
shear (G12 � C) in a frame rotating about the streamwise di-
rection x1

Gij �
0 C 0
0 0 0
0 0 0

0@ 1A; Xf
i � Xf di1: �30�

The con®guration of this ¯ow is similar to what one ®nds in
turbulent ¯ow through a rotating pipe, without of course the
complications due to the presence of the pipe walls. Admit-
tedly, some of those complications are vital in predicting ro-
tating pipe ¯ow, but nevertheless the simpli®ed case considered
here highlights the role played by the rapid pressure-strain-rate
term in this family of ¯ows, and brings to focus some of the
limitations of standard RST models. This ¯ow is a challenging
test case for turbulence models because the streamwise rota-
tion of the frame activates all three shear stresses and also
components of the rapid-pressure strain rate term that are zero
in homogeneous shear ¯ow in a ®xed frame. Some of the
limitations of standard RST models are shown in Fig. 5, where
we compare the predictions of the one-point Q-model and a
standard RST model with those of a two-point (IPRM) sim-

ulation (DNS of this ¯ow are currently being completed at
Stanford University). As shown in Fig. 5(a) and (c), the Q-
model predicts the correct sign for the stress component r13.
This is important because r13 a�ects the evolution of the shear
stress r12. The Q-model captures a reasonable level for r12 and
therefore predicts an exponential growth of the turbulent ki-
netic energy in agreement with the two-point simulation.
Standard RST models, however, an example of which is shown
in Fig. 5(b) and (d), predict the wrong sign for r13, and as a
result they predict a vanishing shear stress r12 and as expected,
a decreasing turbulent kinetic energy.

4. Inhomogeneous turbulence

The Qijk evolution equation for homogeneous turbulence
[see (24) and (25)] is generalized in order to account for in-
homogeneous e�ects (spatial gradients and wall blocking).
Inhomogeneous e�ects are incorporated in the Qijk and e
equations through the addition of standard gradient di�usion
models, accounting for turbulent transport, as outlined below

DQijk

Dt
� Qijk � o

oxr
mdrs

��
� Cm

rQ
Rrss

�
oQijk

oxs

�
; �31�

De
Dt
� E� o

oxr
mdrs

��
� Cm

re
Rrss

�
oe
oxs

�
; �32�

where Qijk represents the right-hand side of Eq. (25), and E
represents the right-hand side of Eq. (20). The turbulent ki-
netic energy is obtained from k � �ikjQijk=2. Following Durbin
(1993), the coe�cient of the production term in the e equation
is sensitized to the ratio of Production to dissipation as
Cs � 2:7�1� 0:1P=e�.

Near-wall e�ects are incorporated in the Q-model through
an elliptic relaxation scheme based on the ideas of Durbin.

Fig. 5. Comparison of one-point model predictions (dashed lines) with

those of two-point IPRM simulations (solid lines) for the homoge-

neous shear in a frame rotating about the streamwise direction

(Cq2
0=e0 � 4:72;Xf =C � 1:0). (a) One-point Q-model vs IPRM for the

evolution of rij, (b) standard RST model vs IPRM for the evolution of

rij, (c) one-point Q-model vs IPRM for the evolution of k=k0,

(d) standard RST model vs IPRM for the evolution of k=k0.

Fig. 4. Comparison of model predictions (lines) for the evolution of

the Reynolds anisotropy in elliptic streamline ¯ow (E � 2:0) with the

1996 DNS by Blaisdell and Shari� (symbols). (a) One-point Q-model

vs DNS, (b) IPRM vs DNS: 11 component (±±±±±±; s); 22 component

(ÿ ÿ ÿ ÿ; r); 33 component (ÿ ÿ ÿ ÿ; �); 13 component

(± � ±; r). Growth of the normalized turbulent kinetic energy: (c) one-

point Q-model (line) vs DNS (symbols), (d) IPRM (line) vs DNS

(symbols).
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In essence, terms in the transport Eq. (25) for Qijk that are not
associated with either production or dissipation of the turbu-
lent kinetic energy are lumped in a term named }ijk . Thus, }ijk

is a model for redistributive processes that is valid for homo-
geneous turbulence. We use kfijk to denote an augmented
version of this model that is valid in inhomogeneous turbu-
lence. kfijk reproduces satisfactorily near-wall redistributive
processes, while reducing to }ijk su�ciently far from solid
boundaries. The ®nal form of the transport equation for Qijk is

DQijk

Dt
� ÿGjmQimk ÿ 1

2
Gtm�tikRmj � 1

2
Gjm�Qimk � Qkmi�

ÿ e
k

Qijk � kfijk � o
oxr

mdrs

��
� Cm

rQ
Rrss

�
oQijk

oxs

�
; �33�

where fijk is obtained by an elliptic relaxation equation,

L2r2fijk ÿ fijk � ÿ}ijk=k; �34�
and the simplest description of }ijk is

}ijk � Qijk � GjmQimk � 1

2
Gtm�tikRmj

ÿ 1

2
Gjm�Qimk � Qkmi� � 1

s
Qijk: �35�

The elliptic relaxation approach introduces some degree of
non-locality back into the equations, which is particularly
important near walls. The scheme described above allows us to
capture the correct near-wall asymptotics and therefore the
correct production of turbulent kinetic energy and the correct
ratio of viscous to turbulent transport near the wall. Su�-
ciently far from the wall, kfijk � }ijk, and the homogeneous
model is recovered. This is in analogy to the elliptic relaxation
scheme applied to RST models by Durbin.

At the wall k goes to zero, and so do the usual turbulent
time and length scales. However, these scales should be ®nite at
the wall, with a lower bound given by their Kolmogorov es-
timates. To reconcile these facts we de®ne the time scale s as a
blending between the turbulent time scale k=e and the Kol-
mogorov time scale, �m=e�1=2

. Similarly the length scale L is a
blending between the turbulent length scale k3=2=e and the
Kolmogorov length scale �m3=e�1=4

, along the lines of Petters-
son et al. (1998).

4.1. Representative results

Preliminary results obtained with the Q-model for fully
developed channel ¯ow are encouraging. The model was im-
plemented in a 1D-code using elliptic relaxation, as outlined
above, and integrated throughout the entire domain, including
the near-wall regions. A comparison of the Q-model predic-
tions with DNS data (Moser et al., 1999) for fully developed
channel ¯ow at Res � 395 is shown in Fig. 6.

The Reynolds stress components (non-dimensionalized by
the wall shear velocity us) are shown in Fig. 6(a). The agree-
ment between the model predictions (dashed lines) and the
DNS (solid lines) is satisfactory. The model slightly overpre-
dicts the peak in the streamwise component R�11 that occurs at
about y� � 15. The components of the normalized Reynolds
stress tensor rij � Rij=q2 are shown in Fig. 6(b). The agreement
between the model predictions and the DNS results is again
reasonable. The agreement in the case of the shear stress r12 is
noteworthy. This is particularly important, since r12 is the only
turbulent stress to provide coupling between the mean ¯ow
equation and the turbulence equations. The mean velocity
pro®le is shown in Fig. 6(c). The model prediction is in good
agreement with the DNS pro®le, the most notable di�erence
being near the channel centerline. Finally, the model pro®le of
the dissipation rate e is shown in Fig. 6(d). The model is again

in good agreement with the DNS, but has a larger wiggle near
the wall than the data shown. This di�erence depends on the
model transport equation for e, and we are currently exploring

Fig. 6. Comparison of model predictions with DNS (Moser et al.,

1999) for fully developed channel ¯ow at Res � 395. (a) Components

of the Reynolds stress tensor, (b) components of the Reynolds stress

tensor normalized by its trace: model �ÿ ÿ ÿÿ�; DNS �±±±±±±�.
(c) mean velocity, (d) dissipation rate: model �±±±±±±�; DNS (�).

Fig. 7. Fully developed Poiseuille ¯ow at Res � 640 with (a) no rota-

tion and (b) with spanwise rotation (Ro � 0:068). Comparison of

model predictions (lines) for the streamwise (u�) and wall-normal (v�)

turbulence intensities with results from the LES (symbols) by Kim

(1983).
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alternative formulations that aim at taking full advantage of
the structure information carried in the new model.

The Q-model has also been tested for fully-developed
Poiseuille ¯ow with system rotation. Here we consider rotation
about the spanwise axis and compare results with the LES by
Kim (1983) for the case Res � ush=m � 640 and Ro � 2hX=Ub �
0:068. The mean friction velocity us is computed using the wall
shear stress averaged on the two walls, h represents the channel
half-width, Ub is the bulk mean velocity across the channel,
and X is the frame rotation rate.

A comparison of the model predictions for the turbulent
intensities with the corresponding LES results is shown in
Fig. 7. The fully developed case with no system rotation is also
included [Fig. 7(a)] as a reference case. The agreement between
the model predictions and the LES results for this reference
case is acceptable. In the rotating case, the model is able to
capture the characteristic asymmetry in the turbulent intensity
pro®les induced by the system rotation and overall agreement
with the LES predictions is acceptable. The model correctly
predicts that the wall normal intensity is signi®cantly higher on
the unstable (pressure) side than on the (stable) suction side of
the channel. Near the channel centerline the model is able to
capture the reversal of the stress anisotropy (v� becoming
higher than u�) due to frame rotation.

5. Conclusions

The turbulence structure a�ects the dynamics in non-equi-
librium turbulence and its e�ects must be emulated by engi-
neering models that are designed for use in complex ¯ow
regimes. This poses a challenge to traditional turbulence
models which completely neglect turbulence structure. Here we
outlined the construction of a new type of model that captures
structure information missing from traditional one-point
models. The model has been validated successfully for a wide
range of deformations of homogeneous turbulence. Results
obtained for simple wall-bounded ¯ows are encouraging. We
are currently evaluating the model in more complex ¯ows.
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